
Table of Contents
Summary..................................................................................................................................... 2
Problem....................................................................................................................................... 2
Edit Distances..............................................................................................................................2
Algorithm..................................................................................................................................... 3
Implementation...........................................................................................................................3
Enhancements.............................................................................................................................4

Algorithm/Implementation.......................................................................................................4
Added benefits........................................................................................................................4

Testing......................................................................................................................................... 4
Further Discussion.......................................................................................................................5

Algorithms...............................................................................................................................5
Why it won't work........................................................................................................................5
All Realm Edit Distance Checking................................................................................................5

Performance............................................................................................................................6
Software Design..................................................................................................................8

Failures.................................................................................................................................... 8
Added Benefits........................................................................................................................8
Caveats................................................................................................................................... 8

Appendix 1: Analysis of Manchester data....................................................................................9
Appendix 2: Analysis of eduroam realms...................................................................................10
Appendix 3: Analysis of Govroam realms...................................................................................11

Version: 18 1/13 29/08/18



Using Edit Distance to Reduce
Bad Realm Proxying

Summary
A way to reduce the proxying of 'Bad Realms' which reduces the reliance on site administrators 
to add filters and keep their systems up to date.

Problem
Jisc publishes documentation1 to help sites filter out inappropriate realms with the aim of 
reducing the number proxied to the NRPS and to help sites spot client device configuration 
problems. The documentation suggests filters for syntactically invalid strings (e.g. 
camford..uk), misspelled string (e.g. cmford.ac.uk) and random other common invalid realms 
(e.g. hotmail.com). 

The first and the last are easily filtered out with static filters on each RADIUS server but the 
second, the misspellings, needs attention from system admistrators to continually update their 
list of incorrect realms. Logs are provided by eduroam listing such realms and reminders are 
sent to sites which send large amounts but it's a manual process and administrators have other
responsibilities. 

Govroam administrators don't appear to be engaging the requests to filter. Whether this is lack 
of time, resources or ability is unknown but if there is a way to take this away from them then it
could be of benefit.

Edit Distances
Spell checkers use algorithms to calculate which word it thinks should have been typed and 
offers suggestions of similar words. They work by calculating the 'edit distance' (or Levenshtein
Distance2) between the typed word and every other word in the dictionary. The closest matches
are suggested. An 'edit distance' can be thought of simply as the number of edits required to a 
string to turn it into the other string. e.g. 'place' to 'plaice' requires one addition (edit distance 
of 1), 'cat' to 'dog' requires three substitutions (edit distance of 3), 'computer' to 'compute' 
requires one deletion (edit distance of 1).

1 https://community.jisc.ac.uk/library/janet-services-documentation/filtering-invalid-realms
2 https://www.cuelogic.com/blog/the-levenshtein-algorithm/

Version: 18 2/13 29/08/18



This approach could be used to calculate a
metric for how close a received realm string
is to, say, the local realm for a site e.g. for
'manchester.ac.uk'. See Table 1 and
Appendix 1

A distance of 0 means that the strings are
identical, a low value means that there's a
high liklihood of a misspelling and a high
value indicates that the strings aren't
similar at all.

Algorithm
If a RADIUS server can implement some
decision logic then it could work like this:

1. For each incoming RADIUS request
compare the realm part of the
Username with the local site realm.

2. If the edit distance is 0 then it's a known realm, deal with it appropriately,

3. If the edit distance is below a defined threshold (say 3) then the realm is a misspelling 
of the local realm by a local user and send back a reject,

4. For all other (higher) edit distances, assume that it's a different realm entirely and proxy
to the NRPS/next level in hierarchy.

In practice, point 2 wouldn't be needed because the basic RADIUS configuration should handle 
matching all the local realms anyway.

Implementation
There are several critical elements to implemeting this approach:

• There must not be a significant overhead to processing these comparisions. Many sites 

have to process many requests per second and delays could cripple a service.

• If in doubt, the RADIUS server should proxy the request. Thus any defaults within the 

comparison software, RADIUS configuration or other must assume this.

• Timeouts should be short. RADIUS servers should not have to wait for any significant 

length of time for processes to time out.

Potential implementations:

• A compiled program that could be distributed via Github for a variety of platforms (Linux

Version: 18 3/13 29/08/18

Realm Distance

manchester.ac.uk 0

mnchester.ac.uk 1

manchesterac.uk 1

manchester.co.uk 2

manchester.ac.co.uk 3

manchester 6

student.ac.uk 6

hotmail.co.uk 7

Table 1: Example distances



32/64 bit, Windows 32/64bit). Supplied parameters would be two string and an integer 
for the site realm, submitted realm and threshold. Return value would be the edit 
distance.

• Modules for RADIUS servers such as FreeRADIUS and RADIATOR.

Sites would integrate this software into their RADIUS servers software along with the 
configuration to make suitable decisions about the response/proxy. The threshold can be 
decided by the site. It should be possible to run it in line but logging the potential decisions, 
rather than enacting them. This way sites would be able to benchmark different threshold 
choices. 

Running individual binaries for each request is less efficient than, say, a module built 
specifically for FreeRADIUS. System resources are required to start up a process but not for 
build-in modules. Whether or not it's possible to integrate with Microsoft NPS, Cisco ISE as 
binaries or modules is unknown at this point.

Enhancements

Algorithm/Implementation
It is worth noting that the Levenshtein algorithm isn't particularly efficient. The number of 
operations is a product of the length of each string. It is not recommended for long strings but 
the the strings used for realms are mostly less than 32 characters.

Our requirements isn't to calculate the edit distances between two strings, but, rather, to 
determine if the edit distance is greater than some threshold.

Neither does the implement have to be 100% accurate. As long as the program errs on the side
of caution (telling the RADIUS server to proxy rather than reject) then it's doing a good enough 
job (reducing, rather than eliminating, bad realms). 

Obvious enhancements and time saving mechanisms:

• If the strings are an exact match then don't perform the comparison, just send to the 

IdP.

• If the strings lengths differ by more than the threshold value, then it's safe to assume 

that the edit distance is exceeded, don't perform the comparison, just Proxy.

• If either of the strings is greater than, say, 20 characters, then don't perform the 

comparison, just proxy, to save processing time.

• Design the software to exit with a 'Proxy' message if the execution time exceeds a limit 

(say, 10ms). 

Version: 18 4/13 29/08/18



Added benefits
The most basic use of the software is comparing two strings and determining if they exceed a 
threshold. However, it could do much more. Rather than expecting sites to implement the 
realm filtering rules as mentioned in the at the start, it would be possible to emcompass these 
into the software. Checks for realm syntax and matching a list of strings are easy and very low 
cost, in terms of processing.

Why it won't work
This all sounds good, right? Well, unfortunately, as described above, it won't work, particularly 
not for eduroam. The whole system relies on the visited site realm to be the only realm that's 
within, say, three edit distances of the requested realm. Unfortunately, this just isn't the case. 
Eduroam's realms may be 8-12 characters long but 95+% of them end in the six characters 
'.ac.uk'. There are plenty of realms with only two preceeding characters. Analysis (see
Appendix 2) gives 130 realms which are just one edit distance apart and 1,500+ two apart. 

Thus if someone from tmc.ac.uk turns up at a wmc.ac.uk site they'd be rejected if a threshold 
of '2' was being used. As would anyone from ic.ac.uk, qmu.ac.uk, rvc.ac.uk etc.

The problem isn't as prominent with Govroam (see Appendix 3) because a) fewer realms (146 
v. 841) and b) more variation in name space (.nhs.uk, .gov.uk, .org, .net etc.). Sites with similar 
names are also more likely to be found within Federations. However, over time there will be 
more and the chances of clashes happening will increase. A threshold of one, currently, 
wouldn't cause a problem but a threshold of two would.

So what's the point of all this?

All Realm Edit Distance Checking
What if it was possible to check every authentication request against every known realm? Then
the aforementioned problem wouldn't exist because, as the algorithm above demonstrates: 
step 1: if there's a match then the RADIUS server will know what to do with a known realm.

There are ways that this could be achieved

1. Distribute the software described above, but, rather than just matching against the local
realm(s), check all realms (or, at least, all UK realms). The software would have to be 
able to download the latest list of realms on a regular basis. This approach would have 
some practical limitations.

2. Have a central service that does the checking. Using a client/server model, send a query
from the RADIUS servers to Jisc which performs the checks and responds with the edit 
distance. 

3. A combination of the above where local software performs queries to a central server 

Version: 18 5/13 29/08/18



then caches the results (and/or a list of all domains) against which it can query 
subsequently. Appropriate expiry times would be needed for the entries.

Performance
The most obvious concern would be around performance. A central service would, potentially, 
need to respond to every authentication request for eduroam/Govroam in the UK. Some 
Universities are handling 30-40 authentication requests per seond at peak times. As stated 
above the edit distance comparision algorithms aren't the most efficient. Comparisons of two 
16 character strings are quick but comparing a string to 800+ other strings would be much 
slower.

Remember though, that the implemention could be optimised and have suitable time outs. As 
long as the client software was written to respond to the RADIUS server quickly and err on the 
side of 'proxy' then at peak times the sites shouldn't suffer any issues. 

It's also worth understanding that, while there are a lot of misspelled realm requests, the 
number of distinct misspelled names is much, much lower due to the way that clients retry and
retry after a reject. Thus caching at both the client and server ends would massively reduce the
query times and loadings.

The first time a query for a particular realm is made the process would be:

1. RADIUS server runs client with requested realm, local realm(s) and threshold. 

2. If the edit distance is 0, the client returns 'local' immediately

◦ RADIUS server handles the authentication locally

3. If the edit distance is greater than the threshold, the client returns the value 'unknown' 
immediately

◦ RADIUS server proxies to the NRPS

4. Otherwise the client sends a query to the central server with the requested realm.

5. The central server compares the realm with all the known realms

6. If the edit distance is 0, returns 'known' to the client.

◦ Clients returns 'remote' to the RADIUS server (which then will proxy the request) 

7. If the edit distance is greater than a central threshold, returns 'unknown' to the client 
and caches the result for that realm and sets the expiry for 24 hours.

◦ Client returns 'unknown' to the RADIUS server (which then will proxy the request)

8. Otherwise returns 'mistake' to the client and caches the result for that realm and sets 
the expiry for 24 hours.

◦ Client returns 'mistake' to the RADIUS server which will then reject it 

Version: 18 6/13 29/08/18



Then the next time there is a request from for that realm from that site, or any other:

1. RADIUS server runs client with requested realm, local realm(s) and threshold. 

2. If the edit distance is 0, the client returns 'local' immediately

◦ RADIUS server handles the authentication locally

3. If the edit distance is greater than the threshold, the client returns the value 'unknown' 
immediately,

◦ RADIUS server proxies to the NRPS

4. Otherwise the client sends a query to the central server with the requested realm.

5. If the edit distance is 0, returns 'known' to the client.

◦ Clients returns 'remote' to the RADIUS server (which then will proxy the request)

Worst case a realm such as 'manchwster.ac.uk' being used from the 'manchester.ac.uk' site for 
the first time. That would require a local lookup, then passed onto the central server, which 
would perform a full comparison. 

It would be reasonable to assume that the misconfigured client with 'manchwster.ac.uk' would 
continue to be used at the manchester.ac.uk site so the result would be cached after that first 
attempt. Only once every, say, 24 hours would the full lookup processing be done for the 
realm.

The central server list of valid realms would need updated every time a new realm is added or 
removed but this is relatively infrequent.

Software Design
The software would need to be written specially either from scratch, or using a high 
performance client server framework such as gRPC3 (see Appendix 4). The benefits of writing 
from scratch are that it can be made as specialised as possible (UDP transport for speed and 
lack of connections to hang) but would take longer to become reliable. Software such as gRPC 
provides an existing well-tested bedrock to build on and would make development much faster.

Another option might be to see if it's possible to convert existing software, such as DNS 
software to this purpose. DNS is a low latency, UDP protocol with caching, performs lookups 
etc. It's already a close match to what's required.

Enhancements
• It might be possible to use DNS queries to help with the realm checks. DNS lookups are 

very fast, low latency, UDP and there are caching servers. In the case of eduroam (less 
so for Govroam) virtually all the realms should match DNS entries.

3 https://grpc.io/

Version: 18 7/13 29/08/18



• For larger sites installing the server software locally could add an extra layer of caching. 

i.e. the client queries a local server, which has results cached. If the local server doesn't 
know the answer then it'll query the central server and cache the results. The local 
server wouldn't have the same list of all realms that the central server would have. The 
local and central server software could be identical, but started with different options 
(e.g. cacheonly v. loadrealms).

• For performance, the servers could return 'proxy' immediately for the first query about a

misspelled realm, and then in the 'background' perform the comparison at their leisure 
and populate the cache for the next such query for the realm. 

• Modules written for RADIUS servers such as FreeRADIUS could include their own local 

caches, removing the need for running the caching servers locally.

Failures
All the software involved should be written or configured deal quickly with failures. The RADIUS 
server should default to proxying if there's no/slow response from the local client, which in turn 
should send back a 'proxy' response if there's no/slow response from the central server. The 
central server should default to shutting down rather than causing delays.

Added Benefits
As suggested in the previous Added Benefits section, this checking system could take over the 
responsibility for checking invalid syntax and for 'hotmail' type realms. Jisc could take 
responsibility for defining a suitable set of filtering rules that would be instantly applied at all 
sites. 

Jisc (and the eduroam/Govroam) communities could benefit from the information gained. 
Analysis of logs and the cache could give more information about realm usage and mis-
configurations.

Testing
Once a suitable piece of software as been written then it needs testing in an environment in 
which it can be thoroughly evaluated. Jisc's own ORPS, the University of Manchester or the 
University of Loughborough might be candidates?

Further Discussion

Algorithms
The Levenshtein algorithm isn't the only way to calculate edit differences.4 There are simpler 

4 https://en.wikipedia.org/wiki/String_metric

Version: 18 8/13 29/08/18



ones, and more complex ones. These may return better results and should be considered as 
alternatives. There are costs (in processing time) to more complex algorithms. However, 
simpler algorithms may be less accurate. There should be a comparison done between the 
various algorithms, using real data, to determine the cost/benefits of them.

Software
The response value from the software is up for discussion. It could supply a series of responses 
such as 'doubledot', 'doubleat', 'blacklistedrealm', 'exceedsthreshold', 'stringtoolong' and let 
the RADIUS server process these accordingly. Alternatively returning a simpler 
proxy/reject/local set of instructions might be better.

Caveats
The smart question right now would be, what about international realms? The initial proposal 
wouldn't work because there would be similar enough realms to trigger a reject inappropriately.
What if there are international realms that would so clash with UK ones. i.e. if someone from 
manchester.ac.es visited manchester.ac.uk then a threshold of 3 would see their request being 
rejected.

Further analysis, using the entire eduroam realm data set would be required but my guess 
would be that the change in TLD would be enough to mean that a threshold of 2 would be 
guaranteed to work and 3 highly likely to do so.

Final Summary
This system should be seen as an enhancement to the Federated Roaming system. It's not a 
dependency and no part of the Roaming system should suffer due to lack of availability of any 
part of the service. If it performs as expected then it could reduce the load on the NRPS (and 
Govroam RRPS), make the administration of ORPS easier for the administrators, provide a more
consistent realm filtering configuration and allow Jisc to manage the filtering configuration 
centrally.

Software needs to be written (or repurposed) and tested in real situations.

Version: 18 9/13 29/08/18



Appendix 1: Analysis of Manchester data
Manchester's ORPS are configured with a list of misspelled realms to reject. Using these as the 
source data they were compared to the realms 'manchester.ac.uk' and 'man.ac.uk' and the 
lowest edit distance calculated. A threshold of '3' was used in the following analysis:

Result (Distance/threshold) Action Realm

Identical Route locally manchester.ac.uk

Identical Route locally man.ac.uk

Within threshold ( 1<=3): M/S: Reject manchesterac.uk

Within threshold ( 1<=3): M/S: Reject manchwster.ac.uk

Within threshold ( 1<=3): M/S: Reject manchester.wc.uk

Within threshold ( 1<=3): M/S: Reject manchestet.ac.uk

Within threshold ( 1<=3): M/S: Reject manhester.ac.uk

Within threshold ( 1<=3): M/S: Reject mancheser.ac.uk

Within threshold ( 1<=3): M/S: Reject manchesster.ac.uk

Within threshold ( 1<=3): M/S: Reject mnchester.ac.uk

Within threshold ( 1<=3): M/S: Reject mamchester.ac.uk

Within threshold ( 1<=3): M/S: Reject manxhester.ac.uk

Within threshold ( 1<=3): M/S: Reject manchested.ac.uk

Within threshold ( 1<=3): M/S: Reject manchestter.ac.uk

Within threshold ( 1<=3): M/S: Reject manchestee.ac.uk

Within threshold ( 1<=3): M/S: Reject mancheter.ac.uk

Within threshold ( 1<=3): M/S: Reject mancheater.ac.uk

Within threshold ( 1<=3): M/S: Reject manchrster.ac.uk

Within threshold ( 1<=3): M/S: Reject manchester.au.uk

Within threshold ( 1<=3): M/S: Reject manchedter.ac.uk

Within threshold ( 1<=3): M/S: Reject mancester.ac.uk

Within threshold ( 1<=3): M/S: Reject nanchester.ac.uk

Within threshold ( 1<=3): M/S: Reject manchestera.ac.uk

Within threshold ( 1<=3): M/S: Reject manchester.ac.uj

Within threshold ( 1<=3): M/S: Reject manchedster.ac.uk

Within threshold ( 1<=3): M/S: Reject manchester.act.uk

Within threshold ( 1<=3): M/S: Reject manchester.ac.uk 

Within threshold ( 1<=3): M/S: Reject manchester.ax.uk

Within threshold ( 2<=3): M/S: Reject manchster.ac.uk 

Within threshold ( 2<=3): M/S: Reject manchestet.ac.ul

Within threshold ( 2<=3): M/S: Reject manchester,ac,uk

Within threshold ( 2<=3): M/S: Reject manchester.co.uk

Within threshold ( 2<=3): M/S: Reject manchester.ac.

Within threshold ( 2<=3): M/S: Reject Manchester.ad.uk

Within threshold ( 2<=3): M/S: Reject mahcester.ac.uk

Within threshold ( 2<=3): M/S: Reject manchester.ca.uk

Within threshold ( 2<=3): M/S: Reject manchedyer.ac.uk

Within threshold ( 2<=3): M/S: Reject machester.ac.uk 

Within threshold ( 3<=3): M/S: Reject manchester.ac

Within threshold ( 3<=3): M/S: Reject manchester.org.uk

Within threshold ( 3<=3): M/S: Reject manchester.edu.uk

Version: 18 10/13 29/08/18



Within threshold ( 3<=3): M/S: Reject manchester.ac.co.uk

Within threshold ( 3<=3): M/S: Reject ds.man.ac.uk

Within threshold ( 3<=3): M/S: Reject manchester.ac 

Exceeded Threshold ( 4> 3): forward manchester.ac.uk.com

Exceeded Threshold ( 4> 3): forward msnchester.ac

Exceeded Threshold ( 4> 3): forward msnchester.ac 

Exceeded Threshold ( 5> 3): forward manchester.ac     

Exceeded Threshold ( 5> 3): forward manchester. 

Exceeded Threshold ( 6> 3): forward yahoo.co.uk

Exceeded Threshold ( 6> 3): forward manchester 

Exceeded Threshold ( 6> 3): forward manchester

Exceeded Threshold ( 6> 3): forward student.ac.uk

Exceeded Threshold ( 6> 3): forward manchester    

Exceeded Threshold ( 6> 3): forward Manchester. 

Exceeded Threshold ( 7> 3): forward gmail.com

Exceeded Threshold ( 7> 3): forward hotmail.co.uk

Exceeded Threshold ( 7> 3): forward yahoo.cn

Exceeded Threshold ( 8> 3): forward yahoo.com

Exceeded Threshold ( 8> 3): forward convidado

Exceeded Threshold ( 8> 3): forward live.com

Exceeded Threshold ( 9> 3): forward student.mancheter.ac.uk

Exceeded Threshold ( 9> 3): forward postgrad.manchester.ac.uk

Exceeded Threshold ( 9> 3): forward manchester.student.co.uk

Exceeded Threshold ( 9> 3): forward student.mancester.ac.uk

Exceeded Threshold ( 9> 3): forward unimail.com

Exceeded Threshold ( 9> 3): forward hotmail.com

Exceeded Threshold (10> 3): forward outlook.com

Exceeded Threshold (12> 3): forward googlemail.com

Exceeded Threshold (12> 3): forward visitor.local

Exceeded Threshold (13> 3): forward 3gppnetwork.org

Exceeded Threshold (14> 3): forward 3gppnetworks.org

Appendix 2: Analysis of eduroam realms
All realms compared with all other realms (excludes 0 edit distance matches).

Distance Count
Distance  1  130
Distance  2  1516
Distance  3  7399
Distance  4  10069
Distance  5  10439
Distance  6  17741
Distance  7  23947
Distance  8  26701
Distance  9  28727
Distance 10  28245
Distance 11  27818
Distance 12  23934
Distance 13  23093
Distance 14  22461
Distance 15  20756

Version: 18 11/13 29/08/18



Distance 16  16442
Distance 17  12908
Distance 18  12392
Distance 19  11446
Distance 20  9164
Distance 21  6338
Distance 22  4458
Distance 23  3277
Distance 24  1907
Distance 25  937
Distance 26  488
Distance 27  339
Distance 28  128
Distance 29  18
Distance 30  2

Appendix 3: Analysis of Govroam realms
All realms compared with all other realms (excludes 0 edit distance matches).

Distance Count

Distance  1  4

Distance  2  17

Distance  3  89

Distance  4  161

Distance  5  169

Distance  6  367

Distance  7  569

Distance  8  744

Distance  9  750

Distance 10  770

Distance 11  797

Distance 12  706

Distance 13  663

Distance 14  516

Distance 15  521

Distance 16  374

Distance 17  218

Distance 18  120

Distance 19  86

Distance 20  87

Distance 21  65

Distance 22  96

Distance 23  77

Distance 24  28

Distance 25  30

Distance 26  26

Distance 27  23

Distance 28  14

Distance 29  22

Distance 30  14

Version: 18 12/13 29/08/18



Distance 31  1

Distance 32  4

Appendix 4: Benefits of using gRPC
“gRPC is a modern open source high performance RPC framework that 
can run in any environment. It can efficiently connect services in and 
across data centers with pluggable support for load balancing, tracing, 
health checking and authentication. It is also applicable in last mile of 
distributed computing to connect devices, mobile applications and 
browsers to backend services”

gRPC is a client/server based set of libraries which can be used to create applications that 
needs to run procedures remotely and tranfer information. 

Its key advantages here are that it's lightweight (the client needs to be able to start up 
quickly), low latency (critical for the number of requests to handled), 10 languages supported 
(cross-platform development required) and well defined. 

It has features like built-in timeouts, language-independent data definitions and load balancing.
Using this framework saves having to develop something similar, or using heavy-weight 
approaches such as REST. 

This application is very simple in that there is a single type of request (Does the distance 
between these two strings exceed a threshold?) and a single type of response (yes/no). It just 
has to do this quickly.

The range of languages makes development easier e.g. initially prototype the client and server 
in an interpretted language like Python or PHP (which are quick to write but slow to run) and 
once the structure is clear, rewrite the parts in a compiled language such as C++. The 
interface between the client and server is language independent so using a python client with a
C++ server will work. Similarly developing for Windows platforms can be done with Java or 
Python and then compiled in C#, for example.

Version: 18 13/13 29/08/18


	Summary
	Problem
	Edit Distances
	Algorithm
	Implementation
	Enhancements
	Algorithm/Implementation
	Added benefits

	Why it won't work
	All Realm Edit Distance Checking
	Performance
	Software Design

	Enhancements
	Failures
	Added Benefits

	Testing
	Further Discussion
	Algorithms
	Software

	Caveats

	Final Summary
	This system should be seen as an enhancement to the Federated Roaming system. It's not a dependency and no part of the Roaming system should suffer due to lack of availability of any part of the service. If it performs as expected then it could reduce the load on the NRPS (and Govroam RRPS), make the administration of ORPS easier for the administrators, provide a more consistent realm filtering configuration and allow Jisc to manage the filtering configuration centrally.
	Software needs to be written (or repurposed) and tested in real situations.
	Appendix 1: Analysis of Manchester data
	Appendix 2: Analysis of eduroam realms
	Appendix 3: Analysis of Govroam realms
	Appendix 4: Benefits of using gRPC

